
Problem Set 1 Solutions

IAP 2020 18.S097: Programming with Categories

Question 1. Functions in mathematics and Haskell. Suppose f : Int→ Int sends an

integer to its square, f(x) := x2 and that g : Int→ Int sends an integer to its successor,
g(x) := x+ 1.

(a) Write f and g in Haskell, including their type signature and their implementation.
(b) Let h := f ◦ g. What is h(2)?
(c) Let i := f # g. What is i(2)?

Our Solution 1.

(a) f :: Int -> Int

g :: Int -> Int

f x = x * x -- x^2 also works

g x = x + 1 -- succ x also works

(b) h(2) = f(g(2)) = g(2) ∗ g(2) = 3 ∗ 3 = 9

(c) i(2) = g(f(2)) = f(2) + 1 = 4 + 1 = 5

Question 2. A tiny category.

Recall that a category consists of the data:
1. a set Ob(C) of objects;
2. for every pair of objects c, d ∈ Ob(C) a set C(c, d) of morphisms;
3. for every three objects b, c, d and morphisms f : b → c and g : c → d, a

specified morphism (f # g) : b→ d called the composite of f and g;
4. for every object c, an identity morphism idc ∈ C(c, c); and

subject to two laws:
Unit: for any f : c→ d, the equations idc # f = f and f # idd = f hold.
Associative: for any f1 : c1 → c2, f2 : c2 → c3, and f3 : c3 → c4, the equation

(f1 # f2) # f3 = f1 # (f2 # f3) holds.

This tiny category is sometimes called the walking arrow category 2.

2 :=
1• 2•id1

f
id2
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(a) Write down the set of objects, the four sets of morphisms, the composition rule,
and the identity morphisms.

(b) Prove that this category obeys the unit and associative laws.

Our Solution 2.

We’ll write C instead of 2 just to make things a little clearer.

(a) Objects: Ob(C) = {1, 2}.
Morphisms:

C(1, 1) = {id1},
C(1, 2) = {f},
C(2, 1) = ∅,
C(2, 2) = {id2}.

Composition:

f ◦ id1 = f
id2 ◦ f = f ,
id1 ◦ id1 = id1

id2 ◦ id2 = id2.

Identities: id1, id2.

(b) One sees above that composing with the identity really is unital: every time an id
is composed with any morphism, the result is that morphism. For associativity,
we need to check five things:

(id1 ◦ id1) ◦ id1 =? id1 ◦ (id1 ◦ id1)

(f ◦ id1) ◦ id1 =? f ◦ (id1 ◦ id1)

(id2 ◦ f) ◦ id1 =? id2 ◦ (f ◦ id1)

(id2 ◦ id2) ◦ f =? id2 ◦ (id2 ◦ f)

(id2 ◦ id2) ◦ id2 =? id2 ◦ (id2 ◦ id2)

They all are true! Both sides are id1, f, f, f, and id2 respectively.

In general, if we have checked the unitality condition, then we don’t need to
check the associativity condition for any composable triples f, g, h that include the
identity: i.e. if any of f, g, or h is an identity then the equation (f◦g)◦h = f◦(g◦h)
automatically holds. This would be a nice exercise for those who want to think
about it, and it would obviate the need to do any work for part b. of this exercise!

Question 3. Is it an isomorphism?. Suppose that someone tells you that their category

C has two objects c, d and two non-identity morphisms, f : c→ d and g : d→ c, but no
other morphisms. Does f have to be the inverse of g, i.e. is it forced by the category
axioms that g ◦ f = idc and f ◦ g = idd?

Our Solution 3. Yes. Since the types are f : c → d and g : d → c, the type of g ◦ f

2



must be c → c, and there is only one morphism in C(c, c), namely idc. This means
g ◦ f = idc, and similarly we get that f ◦ g = idd. These two equations are the very
definition of f being the inverse of g, i.e. of these being isomorphisms.

Question 4. Almost categories.

(a) Give an example of some data – objects, morphisms, composition, and identities
– that satisfies the associative laws but not the unit law.

(b) Give an example of some data – objects, morphisms, composition, and identities
– that satisfies the unit laws but not the associative law.

Our Solution 4. We’ll give two examples in each case.

(a) Example 1: Let C be the category with one object, Ob(C) = {•} and the homset
C(•, •) = Z>0 = {1, 2, 3, . . . } – the set of all positive whole numbers. We compose
two morphisms by adding them: f ◦ g = f + g. No choice of identity morphism
will allow us to satisfy the unit law; for example, if we were to choose 1, we would
find that 1 ◦ 2 = 1 + 2 = 3, which is not equal to 2 like the unit law requires.

Example 2: Let C be the category with one object, Ob(C) = {•} and two mor-
phisms, say A,N : • → • (we’re thinking of the words “All” and “None”). Say
f◦g = A for all f, g. Then this certainly satisfies the associative law: (f◦g)◦h = A
for all morphisms f, g, h. But it does not satisfy the unit law, because there is no
morphism f for which f ◦N = N : neither A nor N work.

(b) Example 1: Let C be the category with one object, Ob(C) = {•} and the homset
C(•, •) = N = {0, 1, 2, 3, . . . } – the set of all non-negative whole numbers. We
compose two morphisms by taking the absolute value of their difference: f ◦ g =
|f − g|. The identity is given by 0, since for every number f we have |0 − f | =
|f − 0| = f . This, however, is not associative; for example

1 ◦ (2 ◦ 3) = 1 ◦ |2− 3| = 1 ◦ 1 = |1− 1| = 0,

whereas
(1 ◦ 2) ◦ 3 = |1− 2| ◦ 3 = 1 ◦ 3 = |1− 3| = 2.

Example 2: Let C be the category with one object, Ob(C) = {•} and four dif-
ferent morphisms, C(•, •) = {id, f, g, h}. For a composition law, first say that id
composed with anything is itself, so we’re guaranteed that the unit law holds. It
remains to violate the associative law.

f ◦ f = f, f ◦ g = f, f ◦ h = g,

g ◦ f = f, g ◦ g = f, g ◦ h = f,

h ◦ f = f, h ◦ g = f, h ◦ h = f

Then f ◦ (g ◦ h) = f ◦ f = f 6= g = f ◦ h = (f ◦ g) ◦ h.
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Question 5. Monoids.

A monoid (M, ∗, e) is
1. a set M ;
2. a function ∗ : M ×M →M ; and
3. an element e ∈M called the identity ;

subject to two laws:
Unit: the equations e ∗m = m and m ∗ e = m hold for any m ∈M .
Associative: the equation (m1 ∗ m2) ∗ m3 = m1 ∗ (m2 ∗ m3) holds for any

m1,m2,m3 ∈M .

(a) Show that (N,+, 0) forms a monoid.
(b) A string in 0 and 1 is a (possibly) empty sequence of 0s and 1s; examples include

0, 11, 0110, 0101110 and so on. We write the empty string []. Let List{0,1} be the
set of strings in 0 and 1. Given two strings a and b, we may concatenate them to
form a new string ab. Show that List{0,1}, together with concatenation and the
empty string [], form a monoid.

(c) Explain why (prove that) every monoid can be viewed as a category with a single
object.

Our Solution 5.

(a) We have a set N, we have a function +: N × N → N, and an element 0 ∈ N;
we just need to check that the laws hold. The unit laws are that 0 + m = m
and m + 0 = m for any natural number m ∈ N; that’s true! And similarly,
(m1 +m2) +m3 = m1 + (m2 +m3) for any three natural numbers.

(b) The set is List{0,1}, which we’ll denote L. The function ++: L × L → L is
concatenation, e.g. [0, 1, 1] ++[1, 1, 0, 1, 0] = [0, 1, 1, 1, 1, 0, 1, 0]. More formally,
suppose that ` is a list of length m and `′ is a list of length m′. Write ` =
[`0, . . . , `m−1] and `′ = [`′0, . . . , `

′
m′−1]. Their concatenation is given by the formula

`++`′ = [`0, . . . , `m−1, `
′
0, . . . , `

′
m′−1].

The empty list [ ] is the unit. Clearly concatenating a list ` with the empty list
does not change the list: `++[ ] = ` and [ ] ++` = `. The associative law is also
easy: both (`++`′) ++`′′ and `++(`′ ++`′′) are given by

[`0, . . . , `m−1, `
′
0, . . . , `

′
m′−1, `

′′
0, . . . , `

′′
m′′−1].

(c) The definition of category in question 2 and the definition of monoid in this
question look remarkably similar. If a category C has one object, say •, then
there is only one set of morphisms, namely C(•, •). Calling that set M , we indeed
have a set of morphisms. The composition formula in C becomes the function
necessary for the monoid; the identity for the unique object becomes the unit of
the monoid. The unit and associativity laws for the category translate precisely
into the unit and associativity laws for the monoid.
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Question 6. Preorders.

A preorder is a category such that, for every two objects a, b, there is at most
one morphism a → b. That is, there either is or is not a morphism from a to
b, but there are never two morphisms a to b. If there is a morphism a → b, we
write a ≤ b; if there is not a morphism a→ b, we don’t.

For example, there is a preorder P whose objects are the positive integers Ob(P) =
N≥1 and whose hom-sets are given by

P(a, b) := {x ∈ N | x ∗ a = b}

This is a preorder because either P(a, b) is empty (if b is not divisible by a) or contains
exactly one element.

(a) What is the identity on 12?
(b) Show that if x : a → b and y : b → c are morphisms, then there is a morphism

y ◦ x to serve as their composite.
(c) Would it have worked just as well to take P to have all of N as objects, rather

than just the positive integers?

Our Solution 6.

(a) 1 is the identity on 12. It’s an element—in fact the unique element—of the hom-set
P(12, 12) = {x ∈ N | x ∗ 12 = 12}.

(b) If x : a→ b is a morphism then x∗a = b. If y : b→ c is a morphism then y ∗ b = c.
Then (y∗x)∗a = y∗(x∗a) = y∗b = c, so we have found an element y∗x ∈ P(a, c).
So we take y ◦ x := y ∗ x.

(c) Yes and no. With the exact definition given for P(a, b) above, the answer is no. In
order to have a preorder, there must be at most one morphism between any two
objects a, b, and this is violated for a = b = 0. Indeed, {x ∈ N | x∗0 = 0} = N has
more than one element. But the answer is yes if we slightly modify the definition
of P(a, b) to have a special case when both a and b are 0:

P(a, b) =

{
{x ∈ N | x ∗ a = b} if a > 0 or b > 0

{1} if a = 0 and b = 0

Here one can check that there is at most one morphism between any two objects.
The only cases to check are a = 0, b > 0 and a > 0, b = 0 and a = 0, b = 0. In
the first case we have P(a, b) = {x | x ∗ 0 > 0} = ∅; that checks out. In the
second case, when a > 0 we have P(a, b) = {x | x ∗ a = 0} = {0}, which has one
element; that checks out. And in the third case when a = b = 0 we have defined
P(a, b) = {1}, which has one element, so that also checks out. It works!

Question 7. Church Booleans. Boolean logic may be encoded in the lambda calculus
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using the following definitions:

True = λx.(λy.x)

False = λx.(λy.y)

AND = λp.(λq.(pq)p)

OR = λp.(λq.(pp)q)

Evaluate the lambda terms (AND True) False and (OR False) True.

Our Solution 7. First we’ll show everything in gory detail.

In the first subproblem will rename variables in False to avoid some ambiguity. So
let’s use False = λx′.(λy′.y′).

(AND True) False =
(
λp.
(
λq.(pq)p

)(
λx.(λy.x)

))(
λx′.(λy′.y′)

)
= λq.

(((
λx.(λy.x)

)
q
)(
λx.(λy.x)

))(
λx′.(λy′.y′)

)
=
((
λx.(λy.x)

)(
λx′.(λy′.y′)

))(
λx.(λy.x)

)
=
(
λy.
(
λx′.(λy′.y′)

))(
λx.(λy.x)

)
= λx′.(λy′.y′) = False

In the second subproblem, we repeat False, so we’ll rename its variables twice.

(OR False) True =
(
λp.
(
λq.(pp)q

)(
λx.(λy.y)

))(
λx.(λy.x)

)
=
(
λq.
((
λx′.(λy′.y′)

)(
λx′′.(λy′′.y′′)

))
q
)(
λx.(λy.x)

)
=
((
λx′.(λy′.y′)

)(
λx′′.(λy′′.y′′)

))(
λx.(λy.x)

)
= (λy′.y′)

(
λx.(λy.x)

)
= λx.(λy.x) = True

Wow, I can’t believe it works!
But there’s an easier way to do both: just keep True and False around.

(AND True) False = λp.(λq.(pq)p)) True False

= (λq.(True q)) True

= True False True

= (λx.(λy.x)) True False

= (λy.False) True

= False

Similarly,

(OR False) True = (λp.(λa.(pp)q)) True False

= (λq.(False False)q) True

= False False True

= (λx.(λy.y)) False True

= (λy.y) True

= True
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Question 8. The Y combinator. The Y combinator is an iconic lambda term whose

reduction does not terminate. It is defined as follows:

Y = λf.
(
(λx.f(xx))(λx.f(xx))

)
Compute Y g.

Our Solution 8.

Y g = λf.
(
(λx.f(xx))(λx.f(xx))

)
g

= (λx.g(xx))(λx.g(xx))

= g
(
(λx.g(xx))(λx.g(xx))

)
.

We will continue on making the required substitutions, but we pause here to note the
equation above. Ok, continuing on...

Y g = g
(
(λx.g(xx))(λx.g(xx))

)
above equation

= g
(
g((λx.g(xx))(λx.g(xx)))

)
substitution for x

= g(Y g) above equation.

In fact, it keeps going on and on, Y g = g(Y g) = g(g(Y g)) and so on. So Y g is called a
fixed point of g.

Question 9. Defining a toy category in Haskell. In Haskell, we may define a typeclass

whose instances are the data of a category in the following way:

class Category obj mor | mor -> obj where

dom :: mor -> obj

cod :: mor -> obj

idy :: obj -> mor

cmp :: mor -> mor -> Maybe mor

The “Maybe” part is saying that two morphisms may not compose (e.g. f : a→ b and
g : b′ → c only compose if b = b′). Note also that there are no laws—associative or
unital—so the user of this class has to just certify that these laws really do hold in their
specific case. Finally, the weird | mor -> obj thing at the top is called a “functional
dependency” and is just there to soothe the compiler.

To compile this typeclass definition, three language pragmas need to be enabled.
This can be done by including the following code at the top of the file:

{-# language FlexibleInstances #-} :

{-# language MultiParamTypeClasses #-}

{-# language FunctionalDependencies #-}

(a) Implement the category 2 = • → • from Question 2 as an instance of this
Category class.
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Our Solution 9.

data Ob = Ob0 | Ob1

data Mor = Id0 | M01 | Id1

mydom :: Mor -> Ob

mydom Id0 = Ob0

mydom M01 = Ob0

mydom Id1 = Ob1

mycod :: Mor -> Ob

mycod Id0 = Ob0

mycod M01 = Ob1

mycod Id1 = Ob1

myidy :: Ob -> Mor

myidy Ob0 = Id0

myidy Ob1 = Id1

mycmp :: Mor -> Mor -> Maybe Mor

mycmp Id0 Id0 = Just Id0

mycmp Id0 M01 = Just M01

mycmp Id0 Id1 = Nothing

mycmp M01 Id0 = Nothing

mycmp M01 M01 = Nothing

mycmp M01 Id1 = Just M01

mycmp Id1 Id0 = Nothing

mycmp Id1 M01 = Nothing

mycmp Id1 Id1 = Just Id1

instance Category Ob Mor where

dom = mydom

cod = mycod

idy = myidy

cmp = mycmp

Question 10. Grade the pset. Give a grade to this problem set, taking into account

how much you learned, how interesting or fun it was, and how much time you spent on
it. Explain your grade.

Our Solution 10. You guys did great!
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