
Problem Set 3

IAP 2020 18.S097: Programming with Categories

Due Friday January 31

Good academic practice is expected. In particular, cooperation is encouraged, but
assignments must be written up alone, and collaborators and resources consulted must
be acknowledged.

We suggest that you attempt all problems, but we do not expect all problems to be
solved. We expect some to be easier if you have more experience with mathematics, and
others if you have more experience with programming. The problems in this problem set
are in general a step more difficult than those in previous problem sets. Nonetheless,
the guideline remains that five problems is a good number to attempt, write up, and
submit as homework.

Question 1. Pullbacks and limits.

Products and terminal objects are examples of limits. Another example is the

pullback. Let C be a category, and let X
f−→ A

g←− Y be a pair of morphisms in C. The

pullback of X
f−→ A

g←− Y is an object X×AY and a pair of morphisms π1 : X×AY → X
and π2 : X ×A Y → Y such that for all commuting squares

C X

Y A

h

k f

g

there is a unique map u : C → X ×A Y such that

C

X ×A Y X

Y A

u
h

k

π1

π2 f

g

commutes.
We’ll think about pullbacks in the category Set of sets and functions.

(a) What is the pullback of the diagram N !−→ 1
!←− B?

(b) What is the pullback of the diagram X
!−→ 1

!←− Y ?
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(c) What is the pullback of the diagram N isEven−−−−→ B yes←−− 1? Here N is the set of
natural numbers B = {yes, no}, and isEven: N → B answers the question “Is n
even?”.

(d) What is the pullback of the diagram N isEven−−−−→ B isOdd←−−− N? Here isOdd answers
the question “Is n odd?”.

(e) Given a general description of the pullback of some diagram X
f−→ A

g←− Y in Set.
(f) How is this notion similar to that of terminal objects and products?

Question 2. Catamorphisms.

Consider the functor F:

data F a = Nil | Cons Int a

deriving Functor

We define the recursive type:

type ListInt = Fix F

(a) Let isEven :: Int -> Bool take an integer to True if it is even, and False

otherwise. Here is an F-algebra.

hello :: F Bool -> Bool

hello Nil = False

hello Cons n a = isEven n || a

What is the induced catamorphism cata hello :: ListInt -> Bool?
(b) Implement the function product :: ListInt -> Int that takes a list of integers

and returns their product.

Question 3. Naturals.

Natural numbers can be represented in Haskell as a recursive data structure

data Nat = Zero | Succ Nat

(a) Implement a type Nat2, isomorphic to Nat, but this time defined as an initial
algebra of a functor.

(b) Using a catamorphism, define a function Nat2 -> Int that maps n to the n-th
Fibonacci number.

(c) Define a coalgebra whose anamorphism is a (partial) function Int -> Nat2 that
sends a non-negative Int into its fixed-point representation (ie. its representation
as a value of Nat2).

Question 4. Merge sort.

A hylomorphism is the composite of an anamorphism and a catamorphism – the
idea is that the anamorphism unfolds a data structure, and the catamorphism refolds
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it in some convenient way. One application of this idea is to the implementation of
sorting algorithms.

In this question, we implement merge sort using a hylomorphism. Here’s the idea:
The seed (the carrier of the coalgebra) is the list to be sorted. Use this function

split :: [a] -> ([a], [a])

split (a: b: t) = (a: t1, b: t2)

where

(t1, t2) = split t

split l = (l, [])

to split the list into two lists and use them as new seeds. Make sure you know how to
deal with empty lists.

The carrier of the algebra is again a list (this time it’s actually a sorted list, but
this cannot be reflected in the type). Your partial results are sorted lists. You combine
them using this function.

merge :: Ord a => [a] -> [a] -> [a]

merge (a: as) (b: bs) =

if a <= b

then a : merge as (b: bs)

else b : merge (a: as) bs

merge as [] = as

merge [] bs = bs

Make sure your program also works for empty lists (it should return an empty list).

Question 5. Monoids as List algebras.

Recall the monad List : Set→ Set that sends a set X to the set of lists of elements
of X, whose multiplication flattens a list of lists, and whose unit takes an element x ∈ X
to the singleton list [x] ∈ List(X).

(a) Given a List-algebra a : List(X)→ X, construct a monoid on the set X.
(b) Given a monoid (X, ∗, e), construct a list algebra.
(c) Show that your two constructions are inverses (we hope they are!).

Question 6. Hello world.

Using the IO monad, write a program that prints Hello world!.

Question 7. The tree monad.

Recall that a binary tree with leaves valued in A is an element of the initial F -algebra
where F is the functor:

FA : Set −→ Set;

X −→ A+X ×X;

(f : X → Y ) 7−→
(
(idA + f × f) : A+X ×X → A+ Y × Y

)
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(a) Define a monad T : Set → Set that maps a set A to the set of trees with leaves
valued in A.

(b) Implement this monad in Haskell.

Question 8. Adjunctions and monads.

Adjunctions are very closely related to monads. In fact, every adjunction induces a
monad by composing the adjoint functors, and every monad factors as the composite
of adjoints (in possibly many different ways). Let’s explore this a little.

Before we begin, let’s recall the notion of an algebra for a monad. Given a monad
(T, µ, η) on a category C, recall that a T -algebra (X, a) is a morphism a : TX → X such
that the diagrams

X TX

X

a

idX
a and

TTX TX

TX X

Ta

µX a

a

Given algebras (X, a) and (Y, b), a morphism between them is a morphism f : X → Y
in C such that

TX X

TY Y

a

Tf f

b

commutes. Algebras and their morphisms form a category TAlg.

(a) Given a monad (T, µ, η) on C and an object A in C, show that (TA, µA) is an
algebra for T . We call this the free algebra on A.

(b) Show that for every monad (T, µ, η) on C there is an adjunction

C TAlg
L

R

where L maps an object A of C to its free algebra (TA, µA), and R maps a
T -algebra (X, a) to its carrier object X.

(c) Suppose that we have an adjunction

C D
L

R

with L the left adjoint and R the right adjoint. Show that there is a monad with
underlying functor (L #R) : C → C.

Question 9. The continuation monad.

For any set S, the S-continuations monad CS : Set→ Set has the following functor
part: X 7→ (SS

X
), or in haskell

data Cont s x = Cont ((x -> s) -> s)
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Do each of the following either in Haskell notation or in mathematical notation: your
choice.

(a) Either write fmap for this functor, or say in mathematical notation how CS acts
on morphisms.

(b) Give the return return x :: x -> Cont s x for this monad, i.e. η : idSet → CS .
(c) Give the join for this monad join :: Cont s (Cont s x) -> Cont s x.
(d) Consider the Kleisli morphisms, and use currying to see them as “continuations”.

What is being “continued”?

Question 10. The Yoneda embedding (Challenge!).

An important theorem in category theory is the Yoneda embedding. Here we imag-
ine the Yoneda embedding as a game. First, we choose a category C together that we
both completely understand. Then I pick a secret object a in C. Your goal is to find an
object that’s isomorphic to my secret object.

You’re allowed to get information about the object in two ways. First, if you name
an object x, I must tell you the set ya(x) = C(x, a) abstractly as a set, but I don’t
have to tell you anything about how its elements are related to the morphisms you
see in C. Second, if you name a morphism m : x → x′, I have to tell me the function
ya(m) : C(x′, a) → C(x, a) between those abstract sets. The Yoneda lemma says that
you can always win this game.

Give a strategy for winning the game in a general category C. (You can assume C
has finitely many objects and morphisms if you want.)

Question 11. Tell a story.

You run into a math major friend in the infinite corridor, and they ask about this
course. In approximately half a page, explain to them something interesting you learned.

Question 12. Grade the pset.

Give a grade to this problem set, taking into account how much you learned, how
interesting or fun it was, and how much time you spent on it. Explain your grade.
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