
Problem Set 2

IAP 2020 18.S097: Programming with Categories

Due Friday January 24

Good academic practice is expected. In particular, cooperation is encouraged, but
assignments must be written up alone, and collaborators and resources consulted must
be acknowledged.

We suggest that you attempt all problems, but we do not expect all problems to be
solved. We expect some to be easier if you have more experience with mathematics, and
others if you have more experience with programming. A guideline is that five problems
is a good number to write up and submit as homework.

Question 1. Functors out of Set.

Consider the category 3, which has three objects and six morphisms, and is depicted
as follows:

1• 2• 3•a b

How many functors are there from Set to 3? Write them down.

Question 2. Constant functors.

Let C and D be categories. Given any object d in D, we can define the constant
functor Kd : C → D on d. This functor sends every of object C to d ∈ ObD, and every
morphism of C to the identity morphism on d.

(a) Take the set B = {T, F}. Show that the constant functor KB : Set→ Set obeys
the two functor laws: preservation of composition and preservation of identities.

(b) Implement in Haskell the constant functor on the type Bool.

Question 3. The naturality of the diagonal.

Let C and D be categories, and let F,G : C → D be functors. Recall that a natural
transformation α : F ⇒ G consists of a morphism αc : F (c)→ G(c) for each c ∈ Ob(C),
such that for each f : c1 → c2 in C the square:

F (c1) F (c2)

G(c1) G(c2)

F (f)

αc1 αc2

G(f)

commutes in D.
Write idSet : Set → Set for the identity functor on Set, and Double : Set → Set

for the functor that sends a set X to the set X ×X, and a function f : X → Y to the
function Double(f) : X ×X → Y × Y that maps (x1, x2) to (f(x1), f(x2)).

1



(a) For each set X, define the diagonal function δX : X → X × X to map x to the
pair (x, x). Prove that δ : idSet ⇒ Double defines a natural transformation.

(b) Using the universal property of the product, write a polymorphic Haskell function
diag :: a -> (a,a) implementing this natural transformation.

Question 4. Uniqueness of universal objects.

Recall the definitions of terminal object and product from Chapter 3 in the notes.

(a) Show that if t and t′ are both terminal objects in a category, then t and t′ are
isomorphic.

(b) Let a and b be objects of a category. Show that p and p′ are both products of a
and b, then they are isomorphic.

(c) Discuss the similarities between your two proofs. Could the same idea be used to
show that any two initial objects are isomorphic?

Question 5. Products in preorders.

Given a set X, a binary operation on X is a function ∗ : X ×X → X – that is, a
way of taking two elements of X and returning a third. This question explores how
the product unifies many seemingly quite different binary operations commonly used
in math.

(a) Consider the category where the objects are natural numbers and where there is
a unique morphism from m to n if m divides n. Given two numbers, for example
42 and 27, what is their product? What is the name of this binary operation?

(b) Consider the category where the objects are subsets of the set {a, b, c, d}, and
where there is a unique morphism from X to Y if X is a subset of Y . Given two
subsets, for example {a, b, c} and {b, d, c}, what is their product? What is the
name of this binary operation?

(c) Consider the category where the objects are true and false, and where there is
a unique morphism a to b if a implies b. Given two objects, for example true and
false, what is their product? What is the name of this binary operation?

Question 6. Products in Hask.

Recall that Haskell has a built-in product (pair) type with constructors written:

data (a,b) = (a,b)

Implement isomorphisms of the following type signatures by drawing diagrams and
translating them into code. Explain why the functions you have constructed are iso-
morphisms.

(a) swap :: (a,b) -> (b,a)

(b) unit :: a -> ((),a)

(c) assoc :: (a,(b,c)) -> ((a,b),c)

Question 7. The product of categories.

Given two categories C and D, we may construct a new category C × D by taking
pairs of objects and morphisms. More precisely:

2



• The objects of C × D are pairs (c, d), where c ∈ Ob C and d ∈ ObD.
• The morphisms (c1, d1) → (c2, d2) are pairs (f, g) where f : c1 → c2 in C and
g : d1 → d2 in D.
• Composition is given pointwise: given (f, g) : (c1, d1)→ (c2, d2) and (h, k) : (c2, d2)→

(c3, d3), their composite is (h ◦ f, k ◦ g) : (c1, d1)→ (c3, d3).
• Similarly, the identity morphisms are given by (idc, idd) : (c, d)→ (c, d).

Recall the category Cat whose objects are categories and morphisms are functors.
Show that C × D is the product of C and D in Cat.

Question 8. Bifunctors.

A bifunctor is a polymorphic type constructor F that takes two variables together
with an implementation of a function

bimap :: (a -> b) -> (c -> d) -> F a c -> F b d

Using the universal property of the coproduct, provide an implementation of bimap for
the sum type constructor Either a b.

Question 9. Programming with categories.

Tell a story about what’s going on in this course. Is there an example you find
interesting or enlightening, or just fun? Have you had any a-ha! moments? Share one.

Question 10. Grade the pset.

Give a grade to this problem set, taking into account how much you learned, how
interesting or fun it was, and how much time you spent on it. Explain your grade.

3


