
Problem Set 1

IAP 2020 18.S097: Programming with Categories

Due Thursday January 16

Good academic practice is expected. In particular, cooperation is encouraged, but
assignments must be written up alone, and collaborators and resources consulted must
be acknowledged.

We suggest that you attempt all problems, but we do not expect all problems to be
solved. We expect some to be easier if you have more experience with mathematics, and
others if you have more experience with programming. A guideline is that five complete
problems is a good number to write up and submit as homework.

Question 1. Functions in mathematics and Haskell.

Suppose f : Int→ Int sends an integer to its square, f(x) := x2 and that g : Int→
Int sends an integer to its successor, g(x) := x+ 1.

(a) Write f and g in Haskell, including their type signature and their implementation.
(b) Let h := f ◦ g. What is h(2)?
(c) Let i := f # g. What is i(2)?

Question 2. A tiny category.

Recall that a category consists of the data:
1. a set Ob(C) of objects;
2. for every pair of objects c, d ∈ Ob(C) a set C(c, d) of morphisms;
3. for every three objects b, c, d and morphisms f : b → c and g : c → d, a

specified morphism (f # g) : b→ d called the composite of f and g;
4. for every object c, an identity morphism idc ∈ C(c, c); and

subject to two laws:
Unit: for any f : c→ d, the equations idc # f = f and f # idd = f hold.
Associative: for any f1 : c1 → c2, f2 : c2 → c3, and f3 : c3 → c4, the equation

(f1 # f2) # f3 = f1 # (f2 # f3) holds.

This tiny category is sometimes called the walking arrow category 2.

2 :=
1• 2•id1

f
id2

(a) Write down the set of objects, the four sets of morphisms, the composition rule,
and the identity morphisms.

(b) Prove that this category obeys the unit and associative laws.

1



Question 3. Is it an isomorphism?.

Suppose that someone tells you that their category C has two objects c, d and two
non-identity morphisms, f : c → d and g : d → c, but no other morphisms. Does f
have to be the inverse of g, i.e. is it forced by the category axioms that g ◦ f = idc and
f ◦ g = idd?

Question 4. Almost categories.

(a) Give an example of some data – objects, morphisms, composition, and identities
– that satisfies the associative laws but not the unit law.

(b) Give an example of some data – objects, morphisms, composition, and identities
– that satisfies the unit laws but not the associative law.

Question 5. Monoids.

A monoid (M, ∗, e) is
1. a set M ;
2. a function ∗ : M ×M →M ; and
3. an element e ∈M called the identity ;

subject to two laws:
Unit: the equations e ∗m = m and m ∗ e = m hold for any m ∈M .
Associative: the equation (m1 ∗ m2) ∗ m3 = m1 ∗ (m2 ∗ m3) holds for any

m1,m2,m3 ∈M .

(a) Show that (N,+, 0) forms a monoid.
(b) A string in 0 and 1 is a (possibly) empty sequence of 0s and 1s; examples include

0, 11, 0110, 0101110 and so on. We write the empty string []. Let List{0,1} be the
set of strings in 0 and 1. Given two strings a and b, we may concatenate them to
form a new string ab. Show that List{0,1}, together with concatenation and the
empty string [], form a monoid.

(c) Explain why (prove that) every monoid can be viewed as a category with a single
object.

Question 6. Preorders.

A preorder is a category such that, for every two objects a, b, there is at most
one morphism a → b. That is, there either is or is not a morphism from a to
b, but there are never two morphisms a to b. If there is a morphism a → b, we
write a ≤ b; if there is not a morphism a→ b, we don’t.

For example, there is a preorder P whose objects are the positive integers Ob(P) =
N≥1 and whose hom-sets are given by

P(a, b) := {x ∈ N | x ∗ a = b}

This is a preorder because either P(a, b) is empty (if b is not divisible by a) or contains
exactly one element.

2



(a) What is the identity on 12?
(b) Show that if x : a → b and y : b → c are morphisms, then there is a morphism

y ◦ x to serve as their composite.
(c) Would it have worked just as well to take P to have all of N as objects, rather

than just the positive integers?

Question 7. Church Booleans.

Boolean logic may be encoded in the lambda calculus using the following definitions:

True = λx.(λy.x)

False = λx.(λy.y)

AND = λp.(λq.(pq)p)

OR = λp.(λq.(pp)q)

Evaluate the lambda terms (AND True) False and (OR False) True.

Question 8. The Y combinator.

The Y combinator is an iconic lambda term whose reduction does not terminate. It
is defined as follows:

Y = λf.
(
(λx.f(xx))(λx.f(xx))

)
Compute Y g.

Question 9. Defining a toy category in Haskell.

In Haskell, we may define a typeclass whose instances are the data of a category in
the following way:

class Category obj mor | mor -> obj where

dom :: mor -> obj

cod :: mor -> obj

idy :: obj -> mor

cmp :: mor -> mor -> Maybe mor

The “Maybe” part is saying that two morphisms may not compose (e.g. f : a→ b and
g : b′ → c only compose if b = b′). Note also that there are no laws—associative or
unital—so the user of this class has to just certify that these laws really do hold in their
specific case. Finally, the weird | mor -> obj thing at the top is called a “functional
dependency” and is just there to soothe the compiler.

To compile this typeclass definition, three language pragmas need to be enabled.
This can be done by including the following code at the top of the file:

{-# language FlexibleInstances #-} :

{-# language MultiParamTypeClasses #-}

{-# language FunctionalDependencies #-}

(a) Implement the category 2 = • → • from Question 2 as an instance of this
Category class.

3



Question 10. Grade the pset.

Give a grade to this problem set, taking into account how much you learned, how
interesting or fun it was, and how much time you spent on it. Explain your grade.

4


