
Chapter 1

Is Haskell a category?

1.1 Programming: the art of composition

What is programming? In some sense, programming is just about giving instructions
to a computer, a strange, very literal beast with whom communication takes some
art. But this alone does not explain why more and more people are programming,
and why so many (perhaps including you, dear reader) are interested in learning to
program better. Programming is about using the immense power of a computer to
solve problems. Programming, and computers, allow us to solve big problems, such
as forecasting the weather, controlling a lunar landing, or instantaneously sending a
photo to your mom on the other side of the planet.

How do we write programs to solve these big problems? We decompose the big
problems into smaller ones. And if they are still too big, we decompose them again,
and again, until we are left writing the very simple functions that come at the base of a
programming language, such as concatenating two lists (or even modifying a register).
Then, by solving these small problems and composing the solutions, we arrive at a
solution to the larger problem.

To take a very simple example, suppose we wanted to take a sentence, and remove
all the spaces. This capability is not provided to us in the base library of a language
like Haskell. Luckily, we can perform the task by composition.

Our first ingredient will be the function words, which takes a sentence (encoded as
a string) and turns it into a comma-separated list of words. For example, here’s what
happens if we call it on the sentence "Hello world":

Prelude> words "Hello world"

["Hello","world"]

Our second ingredient is the function concat, which takes a list of strings and
concatenates them to return a single string. For example, we might run:

Prelude> concat ["I","like","cats"]

1

2 CHAPTER 1. IS HASKELL A CATEGORY?

"Ilikecats"

Composition in Haskell is denoted by a period “.” between two functions. We can
define new functions by composing existing functions:

Prelude> let de-space = concat . words

This produces a solution to our problem.

Prelude> de-space "Yay composition"

"Yaycomposition"

Given that composition is such a fundamental part of programming, and problem
solving in general, it would be nice to have a science devoted to understanding the
essence of composition. In fact, we have one: it’s known as category theory.

As coauthor-Bartosz once wrote: a category is an embarrassingly simple concept.
A category is a bunch of objects, and some arrows that go between them. We assume
nothing about what these objects or arrows are, all we have are names for them. We
might call our objects very abstract names, let x, y, and z, or more evocative ones, like
42 or True or String. Our arrows have a source and a target; for example, we might
have an arrow called f , with source x and target y. This could be depicted as an arrow:

x y
f

Or as a box called f , that accepts an ‘x’ and outputs a ‘y’:

fx y

What is important, is that in a categorywe can compose. Given an arrow f : x → y and
an arrow 1 : y → z, we may compose them to get an arrow with source x and target z.
We denote this arrow f # 1 : x → z; we might also draw it as piping together two boxes:

f 1
x y z

This should remind you of our de-spacing example above, stripped down to its bare
essence.

A category is a network of relationships, or slightly more precisely, a bunch of
objects, some arrows that go between them, and a formula for composing arrows.
A programming language generally has a bunch of types and some programs that
go between them (ie. take input of one type, and turn it into output of another).
The guiding principle of this book, is that if you think of your (ideal) programming
language like a category, good programs will result.

So let’s go forward, and learn about categories. But first, it will be helpful tomention
a few things about another fundamental notion: sets.

1.2. TWO FUNDAMENTAL IDEAS: SETS AND FUNCTIONS 3

1.2 Two fundamental ideas: sets and functions

1.2.1 What is a set?

A set, in this book, is a bag of dots.

0• 1• 2•X �
a• foo• ♥• 7•Y � Z �

This set X has three elements, the dots. We could write it in text form as X � {0, 1, 2};
when we write 1 ∈ X it means “1 is an element of X”. The set Z has no elements; it’s
called the empty set. The number of elements of a set X is called its cardinality because
cardinals were the first birds to recognize the importance of this concept. We denote
the cardinality of X as |X |. Note that cardinalities of infinite sets may involve very large
numbers indeed.

Example 1.1. Here are some sets you’ll see repeated throughout the book.

Name Symbol Elements between braces
The natural numbers N {0, 1, 2, 3, . . . , 422048+17, . . .}
The nth ordinal n {1, . . . , n}
The empty set � {}
The integers Z {. . . ,−59,−58, . . . − 1, 0, 1, 2, . . .}
The booleans B {true, false}

Exercise 1.2.
1. What is the cardinality |B| of the booleans?
2. What is the cardinality |n | of the nth ordinal?
3. Write 1 explicitly as elements between braces.
4. Is there a difference between 0 and �? ♦

Definition 1.3. Given a set X, a subset of it is another set Y such that every element of Y
is an element of X. We write Y ⊆ X, a kind of curved version of a less-than-or-equal-to
symbol.

Exercise 1.4.
1. Suppose that a set X has finitely many elements and Y is a subset. Is it true that

the cardinality of Y is necessarily less-than-or-equal-to the cardinality of X? That
is, does Y ⊆ X imply |Y | ≤ |X |?

2. Suppose now that Y and X are arbitrary sets, but that |Y | ≤ |X |. Does this imply

4 CHAPTER 1. IS HASKELL A CATEGORY?

Y ⊆ X? If so, explain why; if not, give a counterexample. ♦

Definition 1.5. Given a set X and a set Y, their (cartesian) product is the set X × Y that
has pairs 〈x , y〉 as elements, where x ∈ X and y ∈ Y.

One should picture the product X × Y as a grid of dots. Here is a picture of 6 × 4
and its projections:

〈1,1〉•1•

〈1,2〉•2•

〈1,3〉•3•

〈1,4〉•4•

1•

〈2,1〉•

〈2,2〉•

〈2,3〉•

〈2,4〉•

2•

〈3,1〉•

〈3,2〉•

〈3,3〉•

〈3,4〉•

3•

〈4,1〉•

〈4,2〉•

〈4,3〉•

〈4,4〉•

4•

〈5,1〉•

〈5,2〉•

〈5,3〉•

〈5,4〉•

5•

〈6,1〉•

〈6,2〉•

〈6,3〉•

〈6,4〉•

6•

The name product is nice because the cardinality of the product is the product of the
cardinalities: |X × Y | � |X | × |Y |. For example |6 × 4| � 24, the product of 6 and 4.

Exercise 1.6. We said that the cardinality of the product X × Y is the product of |X |
and |Y |. Does that work even when X is empty? Explain why or why not. ♦

One can take the product of any two sets, even infinite sets, e.g. N × Z or N × 4.

Exercise 1.7.
1. Name three elements of N × 4.
2. Name three subsets of N × 4. ♦

1.2.2 Functions

A function is a machine that turns input values into output values. It’s total and
deterministic, meaning that every input results in at least one and at most one—i.e.
exactly one—output. If you put in 5 today, you’ll get an answer, and you’ll get exactly
the same answer as if you put in 5 tomorrow.

Definition 1.8 (Function). Let X and Y be sets. A function f from X to Y, denoted
f : X → Y, is a subset of f ⊆ X × Y with the following properties.

1. For any x ∈ X there is at least one y ∈ Y for which (x , y) ∈ f .
2. For any x ∈ X there is at most one y ∈ Y for which (x , y) ∈ f .

If f satisfies the first property we say it is total, and if it satisfies the second property

1.2. TWO FUNDAMENTAL IDEAS: SETS AND FUNCTIONS 5

we say it is deterministic.
If f is a function (satisfying both), then we write f (x) or f x to denote the unique y

such that (x , y) ∈ f .

This is a rather abstract definition; perhaps some examples will help. One way of
denoting a function f : X → Y is by drawing “maps-to” arrows 7→ that emanate from
some particular x ∈ X and point to some particular y ∈ Y. Every x ∈ X gets exactly
one arrow emanating from it, but no such rule for y’s.

Example 1.9. The successor function s : N→ N sends n 7→ n+1. For example s(52) � 53.
Here’s a picture:

•0
•1
•2
•3
•4
...

N �

•0
•1
•2
•3
•4
...

� N

Every natural number n input is sent to exactly one output, namely s(n) � n + 1.

Example 1.10. Here’s a picture of a function 4→ 4:

•1
•2
•3
•4

•1
•2
•3
•4

Exercise 1.11.
1. Suppose someone says “n 7→ n−1 is also a function N→ N. Are they right?
2. Suppose someone says “n 7→ 42 is also a function N→ N. Are they right?
3. Draw arrows from elements in 3 to elements in 4 in a way that’s not total.
4. Draw arrows from elements in 3 to elements in 4 in a way that’s not deterministic.

♦

6 CHAPTER 1. IS HASKELL A CATEGORY?

Exercise 1.12.
1. How many functions 3→ 2 are there? Write them all.
2. How many functions 1→ 7 are there? Write them all.
3. How many functions 3→ 3 are there?
4. How many functions 0→ 7 are there?
5. How many functions 0→ 0 are there?
6. How many functions 7→ 0 are there? ♦

In general, for any a , b ∈ N there are ba functions a → b. You can check your
answers above using this formula. The one case that you might be confused is when
a � b � 0. In this case, a calculus teacher would say “the expression 00 is undefined”,
but we’re not in calculus class. It may be true that as a functions of real numbers, there
is no smooth way to define 00, but for natural numbers, the formula “count the number
of functions a → b” works so well, that we define 00 � 1.

1.2.3 Some intuitions about functions

A lot of intuitions about functions translate into category theory. A function is allowed
to collapse multiple elements from the source into one element of the target or to miss
elements of the target:

•x
′

•x

•
y

or

•
y′

•
y

•x

On the other hand, a function is forbidden from splitting a source element intomultiple
target elements.

•
y′

•
y

•x

Hey! Not a function!

There is another source of asymmetry: functions are defined for all elements in the
source set. This condition is not symmetric: not every element in the target set has to
be covered. The subset of elements in the target that are in a functional relation with
the source is called the image of a function:

im f � {y ∈ Y | ∃x ∈ X. f (x) � y}
“The image of f is the set of y’s in Y such that there exists an x in X where f (x) � y.”

1.2. TWO FUNDAMENTAL IDEAS: SETS AND FUNCTIONS 7

The directionality of functions is reflected in the notation we are using: we repre-
sent functions as arrows going from source to target, from domain to codomain. This
directionality makes them interesting.

You may think of a function that maps many things to one as discarding some
information. The function N→ B that takes a natural number and returns true if it’s
even and false otherwise doesn’t care about the precise value of a number, it only
cares about it being even or odd. It abstracts some important piece of information by
discarding the details it considers inessential.

You may think of a function that doesn’t cover the whole codomain as embedding its
source in a larger environment. It’s creating a model of its source in a larger context,
especially when it additionally collapses it by discarding some details. A helpful
intuition is to think of the source set as defining a shape that is projected into a bigger
set and forms a pattern there. Compared to category theory, set theory offers a very
limited choice of bare-bones shapes.

Abstraction andmodeling are the twomajor tools that help us understand theworld.

Example 1.13. A singleton set is the simplest non-trivial shape. A function from a
singletonpicks a single element from the target set. There are asmanydistinct functions
from a singleton to a non-empty set as there are elements in that set. In fact we may
identify elements of a set with functions from the singleton set. We’ll see this idea used
in category theory to define global elements.

Example 1.14. A two-element set can be used to pick pairs of elements in the target set.
It embodies the idea of a pair.

•b

•a
...

...

...

•1

•0

As an example, consider a function from a two-element set to a set of musical notes.

8 CHAPTER 1. IS HASKELL A CATEGORY?

You may say that it embodies the idea of a musical interval.

Exercise 1.15. Let N be the set of musical notes, or perhaps the keys on a standard
piano. Person A says “amusical interval is a subset I ⊆ N such that I has two elements.
Person B says “no, a musical interval is a function i : 2 → N , from a two element set
to N . They prepare to fight bitterly, but a peacemaker comes by and says “you’re both
saying the same thing!” Are they? ♦

Exercise 1.16. How would you describe functions from an empty set to another set A.
What do they model? (This is more of a Zen meditation than an exercise. There are no
right or wrong answers.) ♦

Remark 1.17. Category theory has a love/hate relationship with set theory. Secretly,
category theorists dream of overthrowing the rule of set theory as the foundation of
mathematics (more recently, homotopy type theorists have restarted this quest). But
so far, even most category theorists continue to work within set-theoretic foundations.
You’ll see that we might skirt the issue by saying that category is a “bunch” of objects,
because they don’t really have to form a set-theoretical set, but then we can’t say the
same about morphisms between objects. They do form sets. Every time we draw
a commuting diagram, we are asserting that two (or more) elements in some set of
morphisms are equal. Granted, there are ways of postponing this fallback to sets by
introducing enriched categories, but even these eventually force you to draw diagrams
that, at some level, assert the equality of set elements. The bottom line is that we have
to have some knowledge of set theory beforewe tackle category theory. We can think of
sets as these primordial, structureless categories, but in order to build more interesting
structures we have to start from the structureless.

There is another incentive to studying set theory, that is that sets themselves form a
category, which is a very fertile source of examples and intuitions. On the one hand,
we wouldn’t like you to think of morphisms in an arbitrary category as being some
kind of functions. On the other hand, we can define and deeply understand many
properties of sets and functions that can be generalized to categories.

What an empty set is everybody knows, and there’s nothing wrong in imagining
that an initial object in a category is “sort of” like an empty set. At the very least,
it might help in quickly rejecting some wrong ideas that we might form about initial
objects. We can quickly test them on empty sets. Programmers know a lot about
testing, so this idea that the category of sets is a great testing platform should sound
really attractive.

1.3. CATEGORIES 9

1.3 Categories

In this section we’ll define categories, and give a library of useful examples. Instead
of beginning directly with a definition, we’ll motivate the definition by discussing the
ur-example: the category of sets and functions.

1.3.1 The category of sets

The identity function on a set X is the function idX : X → X given by idX(x) � x. It
does nothing. This might seem like a very boring thing, but it’s like 0: adding it does
nothing, but that makes it quite central. For example, 0 is what defines the relationship
between 6 and -6: they add to 0.

Just like 0 as a number really becomes useful when you know how to combine
numbers using +, the identity function really becomes useful when you know how to
combine functions using “composition".

Definition 1.18. Let f : X → Y and 1 : Y → Z be functions. Then their composite,
denoted either 1 ◦ f or f # 1, is the function X → Z sending each x ∈ X to 1(f (x)) ∈ Z.

The above definition makes it look like 1 ◦ f is better notation, because (1 ◦ f)(x) �
1(f (x)) looks than the backwards-seeming formula (f # 1)(x) � 1(f (x)), which has a
sort of switcheroo built in. But there are good reasons for using f # 1, e.g. this diagram

Y

X Z

1

f #1

f

Another is that—as we saw in ??—an element of X is just a function 1 → X. From
this point of view, function application is just composition. That is, if f : X → Y is a
function then what’s normally denoted f (x) could instead be denoted x # f

X

1 Y

f

x# f

x

10 CHAPTER 1. IS HASKELL A CATEGORY?

Example 1.19. A great way to visualize function composition is by path following.

•1
•2
•3
•4

•1
•2
•3
•4
•5

•1
•2
•3

X Y Z
f 1

Following the paths from X to Z, we see that 1(f (3) � 1 and 1(f (2)) � 2.

Now the above backwards-seeming formula becomes x # (f # 1) � (x # f) # 1, and the
switcheroo is gone. That is, we see that the preference for the ◦ notation is built in to
the f (x) notation, which is already backwards. In the # direction, you start with an x,
then you apply f , then you apply 1, etc.

Suppose that f : X → Y is a function. Then if we compose it with either (or both!)
of the identity functions, idX : X → X or idY : Y → Y, the result is again f .

•1
•2
•3
•4

•1
•2
•3
•4

•1
•2
•3
•4
•5

•1
•2
•3
•4
•5

X X Y Y
fidX idY

Composing with the identity doesn’t do anything.

The second property we want to highlight is that you can compose multiple func-

tions at once, not just two. That is, if you have a string of n functions X0
f1−→ X1

f2−→
· · ·

fn−→ Xn , you can collapse it into one function by composing two-at-a-time in many
different ways. This is denoted mathematically using parentheses. For example we

can compose this string of functions V
e−→ W

f
−→ X

1

−→ Y
h−→ Z as any of the five ways

1.3. CATEGORIES 11

represented in the pentagon below:

•
(e # f) # (1 # h)

•
e # (f # (1 # h))

•
e # ((f # 1) # h)

•
(e # (f # 1)) # h

•
((e # f) # 1) # h

(1.20)

It turns out that all these different ways to collapse four functions give the same answer.
You could write it simply e # f # 1 # h and forget the parentheses all together.

A betterword than “collapse” is associate: we’re associating the functions in different
ways. The associative law says that (f # 1) # h) � f # (1 # h).

When composing functions, how you parenthesize doesn’t matter: you’ll get the same answer
no matter what.

Exercise 1.21. Consider the pentagon (sometimes called the associahedron) in Eq. (1.20).
1. Show that each of the five dotted edges corresponds to an instance of the asso-

ciative law in action.
2. Are there any other places where we could do an instance of the associative law

that isn’t drawn as a dotted edge?
♦

1.3.2 Definition of category

We begin with a slogan:

A category is an organized network of relationships.

The prototypical category is Set, the category of sets.1 The objects of study in Set
are, well, sets. The relationships of study in Set are the functions. These form a vast

1Actually, Set is the category of small sets, meaning sets all of whose elements come from some huge
pre-chosen universe U. The axiom of Grothendieck universes, which says that there’s an infinite ascending
hierarchy of theseU’s uses some pretty heavy set theory tomake sure you don’t have toworry aboutweird
paradoxes that come about when one allows themselves to speak of the infamous ‘set of all sets.’ For a
given universe U the purportedly ‘small sets’ can include uncountably infinite sets, as long as they’re in
U. This way, rather than talking about the set of all sets, we talk about the (larger) set of all (small) sets,
and everything is just a set, albeit in different universes.

The point is, you don’t need to worry about all these “size issues”; just focus on the category theory for
now. If you want to get deep into the technical set-theoretic issues, see [**].

12 CHAPTER 1. IS HASKELL A CATEGORY?

network of arrows pointing from one set to another.

•
0

•
2

•
1 (and if you toss in 3, you’ll need to add

30+31+32+33+23+13+03 � 49 more arrows
with it! See https://oeis.org/A231344) (1.22)

But Set not just any old network: it’s organized in the sense that we know how to
compose the functions. This imposes a tight constraint: if pretty much any function
was somehow left out of the network, it would cause a huge catastrophe of missing
composites.

Let’s see the precise definition.

Definition 1.23. A category C consists of four constituents:
1. a set Ob(C), elements of which are called objects of C;
2. for every pair of objects c , d ∈ Ob(C) a set C(c , d), elements of which are called

morphisms from c to d and often denoted f : c → d;
3. for every object c, a specified morphism idc ∈ C(c , c) called the identity morphism

for c; and
4. for every three objects b , c , d and morphisms f : b → c and 1 : c → d, a specified

morphism (f # 1) : b → d called the composite of f and 1, sometimes denoted 1 ◦ f .
These constituents are subject to three constraints:
Left unital: for any f : c → d, the equation idc # f � f holds
Right unital: for any f : c → d, the equation f # idd � f holds
Associative: for any f1 : c1 → c2, f2 : c2 → c3, and f3 : c3 → c4, the equation (f1 # f2) #

f3 � f1 # (f2 # f3) holds

Example 1.24 (The category of sets). The category of sets, denoted Set has all the setsa

as its objects the sets. Given two sets A, B ∈ Ob(Set), we have Set(A, B) B { f : A →
B | f is a function}. There’s sets everywhere: objects are sets, for every two objects
Set(A, B) is also a set. This situation where the collection of morphisms A → B itself
forms an object is a distinctive feature of certain categories that we’ll see a lot of later,
called “closed categories.” For example, just as there is a set of functions from one set
to another, a student of linear algebra might know that there is a vector space of linear
transformations from one vector space to another.

But you don’t have to worry about closed categories for now; we’ll get to it.
aIn some universe U; don’t worry about this for now.

https://oeis.org/A231344

1.3. CATEGORIES 13

Exercise 1.25. Let’s return to a remark wemade earlier about the category Set. Is there
any single morphism you can take out of it, such that—without taking away any more
morphisms—the remaining collection of objects andmorphisms is still a category? ♦

1.3.3 Some elementary examples

Even though the notion of category is somehow modeled on Set, there are tons of
categories that don’t really resemble it at all! Some of the most important categories
are the little ones. It’s like how the numbers 0, 1, and 2 are perhaps evenmore important
than the number 99.

Example 1.26. There is a single-object category 1 with no other arrows but the identity
arrow.

1

id1

Example 1.27 (Discrete categories). You can also have a category with two objects 1 and
2 and two identity morphisms id1 and id2.

Disc(2) � 1 2

id1 id2

In fact, for every set S, there’s an associated category Disc(S), called the discrete category
on S. The objects of Disc(S) are the elements of S, i.e. Ob(Disc(S)) � S, and the
morphisms are just the identities:

Disc(S)(s , s′) �
{
{ids} if s � s′

� if s , s′

In particular, the empty category is given by 0 � Disc(0).

So far we haven’t gained any advantage over sets. But in a category we not only
have objects; we may have arrows between them. This is when interesting structures
arise. For instance, we can add a morphism ar : 1→ 2 to the two-object category.

Example 1.28. This tiny category is sometimes called the walking arrow category 2.

14 CHAPTER 1. IS HASKELL A CATEGORY?

2 B 1• 2•id1
f

id2

Exercise 1.29. Show that thewalking arrowcategory 2 satisfies all the laws of a category.
♦

Since an identity morphism ida automatically has to be there for each object a,
and since a composite morphism 1 ◦ f automatically has to be there for every pair of
morphisms f : a → b and 1 : b → c, we often leave these out of our pictures.

Example 1.30 (Not drawing all morphisms). In the picture • → • → • , only two
arrows are drawn, but there are implicitly six morphisms: three identities, the two
drawn arrows, and their composite.

So with this new convention, we redraw the walking arrow category from Exam-
ple 1.28 as

2 B 1• 2•f

Example 1.31 (Ordinal categories). There is a progression of ordinal categories that look
like this:

1•

1
1• 2•f12

2
1• 2• 3•f12 f23

3

· · ·

0

Adherents of the religion of Twodeism—called Twoish people—believe that 2 is the
categorical manifestation of the creator of all things. (Twoish people also worship the
set 2, its “higher-categorical” analogues, and various products of these. Among other
pastimes, they enjoy working in cubical type theory.)

Exercise 1.32. Being sure to take into account Example 1.30,
1. How many morphisms are there in 3?
2. How many morphisms are there in n?
3. Are 0 and Disc(0) the same?
4. Are 1 and Disc(1) the same? ♦

Example 1.33 (The walking isomorphism). In the following category there are two

1.3. CATEGORIES 15

objects and four morphisms:

1• 2•
f

1

1 ◦ f � id1
f ◦ 1 � id2

below ◦ right id1 id2 f 1

id1 id1 Hey! Hey! 1
id2 Hey! id2 f Hey!

f f Hey! Hey! id2

1 Hey! 1 id1 Hey!

To the left we see the drawing, with equations that tell us how morphisms compose.
We see that f and 1 are inverses; each is an isomorphism in the sense of Definition 1.51.
To the right, we see a table of all the composites in the category. Whenever two
morphisms are not composable—the output object of one doesn’t match the input type
of the other—the table yells at you. In Haskell, the error message is something like
“couldn’t match types".

Exercise 1.34. Suppose that someone tells you that their category C has two objects c , d
and two non-identity morphisms, f : c → d and 1 : d → c, but no other morphisms.
Does f have to be the inverse of 1, i.e. is it forced by the category axioms that 1 ◦ f � idc

and f ◦ 1 � idd? ♦

Example 1.35 (Monoids). Amonoid is like a video game controller: it’s a set of “things
you can do in sequence”. More precisely, we have the following definition.

Definition 1.36. A monoid (M, e ,�) consists of
1. a set M, called the carrier set;
2. an element e ∈ M, called the unit; and
3. a function � : M ×M → M, called the operation.

These are subject to two conditions:
a. for any m ∈ M, we have e �m � m and m � e � m, and
b. for any l ,m , n ∈ M, we have (l �m) � n � l � (m � n).

For example, (N, 0,+) is called the additive monoid of natural numbers. The carrier
is N, the unit is 0, and the operation is +. In this monoid, you can “add numbers in
sequence”, e.g. 5 + 6 + 2 + 2.

What’s the point? It turns out that a monoid can always be regarded as a category
with one objecta If a category has one object, say

aThe term monoid comes from mono+id, where mono means one and idmeans the Freudian self.

Example 1.37. We don’t expect you to know Haskell at this point, but here’s a preview
of how one might define categories and explain to the compiler that monoids are

16 CHAPTER 1. IS HASKELL A CATEGORY?

categories:a

class Category obj mor | mor -> obj where

dom :: mor -> obj

cod :: mor -> obj

idy :: obj -> mor

cmp :: mor -> mor -> Maybe mor

The “Maybe” part is saying that two morphisms may not compose (e.g. f : a → b and
1 : b′ → c only compose if b � b′). Note also that there are no laws—associative or
unital—so the user of this class has to just certify that these laws really do hold in their
specific case. Finally, the weird | mor -> obj thing at the top is called a “functional
dependency” and is just there to soothe the compiler.

In Haskell, there is already a monoid class; what we call the unit it calls mempty (like
monoid-empty), and it denotes the operation we write as � by <>. So now we explain
to the compiler that a monoid is a category with one (denoted () in Haskell) object:

instance Monoid mor => (Category () mor) where

dom _ = ()

cod _ = ()

idy _ = mempty

cmp m n = Just (m <> n)

aThe code above doesn’t quite compile; you need to enable some language extensions first:
{-# language FlexibleInstances #-}
{-# language MultiParamTypeClasses #-}
{-# language FunctionalDependencies #-}

Exercise 1.38. Implement the category 2 � • → • from Example 1.31 as an instance
of the Category class from Example 1.37. ♦

Monoids can be regarded as categories with one object. They’re categories that
are tiny in terms of objects—just one! Not quite analogously, but similarly, we’ll next
discuss categories which are tiny in terms of morphisms.

Example 1.39 (Preorders). A preorder is a category such that, for every two objects a , b,
there is at most one morphism a → b. That is, there either is or is not a morphism
from a to b, but there are never two morphisms a to b. If there is a morphism a → b,
we write a ≤ b; if there is not a morphism a → b, we don’t.

For example, there is a preorder P whose objects are the positive integers Ob(P) �
N≥1 and where

P(a , b) B {x ∈ N | x ∗ a � b}

This is a preorder because either P(a , b) is empty (if b is not dividible by a) or contains

1.3. CATEGORIES 17

exactly one element.

Exercise 1.40. Consider the category P.
1. What is the identity on 12?
2. Show that if x : a → b and y : b → c are morphisms, then there is a morphism

y ◦ x to serve as their composite.
3. Would it have worked just as well to take P to have all ofN as objects, rather than

just the positive integers? ♦

Example 1.41. In Haskell there are various type classes. A type class is basically a
template for named functions of certain types: it’s a bunch of keywords—each referring
to a function of some type—that any member of the class needs to give meanings for.

For example, the type class Show is the template {show}: any type T that wants to be
in Show needs to say what the word showmeans to them; it needs to say what function
show:: T -> String should mean. The type class Eq is the template for the words ==
and /=; any member T of that class needs to say what functions ==:: T -> Bool and
/=:: T -> Bool should mean.

There is a hierarchy of type classes in Haskell, and a hierarchy is another name for
preorder; there is a preorder of type classes in Haskell. Here’s a picture of part of it:

Eq

Ord Num

Real Fractional

Our arrows point in the opposite direction from the way most people write it. Our
arrows A→ B point in the direction “if something is of type A then it is also of type B”.
If you prefer the other order, please apply op, defined in Example 1.44, thus answering
Exercise 1.45.

Example 1.42 (Free category on a graph). A graph consists of two sets V, E and two
functions src : E → V and tgt : E → V . The elements of V are called vertices, the
elements of E are called edges, and for each edge e ∈ E, the vertex src(e) is called its
source and the vertex tgt(e) is called its target.

One can depict a graph by drawing a dot on for each element v ∈ V and an arrow

18 CHAPTER 1. IS HASKELL A CATEGORY?

for each element e ∈ E, making the arrow point from the source of e to the target of e:

a• b•

c• d•

1

2

3
4 56

Edge src tgt
1 a b
2 a b
3 b b
4 a c
5 b b
6 c a

Vertex
a
b
c
d

For any graph G as above, there is an associated category, called the free category
on G, denoted Free(G). The objects of Free(G) are the vertices of G. The morphisms
of Free(G) are the paths in G, i.e. the head-to-tail sequences of edges in G. For each
vertex, the trivial path—no edges—counts as a morphism, namely the identity. You
can compose paths (just stick them head-to-tail), and this composition is associative.

Exercise 1.43. Is the ordinal category 3 (see Example 1.31) the free category on a graph?
If so, which graph; if not, why not? ♦

Example 1.44 (Opposite category). For any category C, there is a category Cop defined
by “turning all the arrows around”. That is, the two categories have the same objects,
and all the arrows simply point the other way:

Ob(Cop) B Ob(C) and Cop(a , b) B C(b , a).

Exercise 1.45. If TC is the category shown in Example 1.41, how would you draw
TCop? ♦

Example 1.46 (Product category). Suppose C and D are categories. We can form a new
category C ×D as follows:

Ob(C ×D) B Ob(C) ×Ob(D) and (C ×D)
(
(c , d), (c′, d′)

)
B C(c , c′) ×D(d , d′).

1.3. CATEGORIES 19

For example, the very Twoish category 2 × 2 looks like this:

〈1, 1〉 〈1, 2〉

〈2, 1〉 〈2, 2〉

〈id1 , f 〉

〈 f ,id1〉 〈 f ,id2〉

〈id2 , f 〉

〈 f , f 〉

〈id2 , f 〉 ◦ 〈 f , id1〉 � 〈 f , f 〉
〈 f , id2〉 ◦ 〈id1 , f 〉 � 〈 f , f 〉

Example 1.47 (Full subcategories). Let C be any category, and suppose you want “only
some of the objects, but all the morphisms between them”. That is, you start with
a subset of the objects, say D ⊆ Ob(C), and you want the biggest subcategory of C
containing just those objects; this is called the full subcategory of C spanned by D and we
denote it COb�D . It’s defined by

Ob(COb�D) B D and COb�D(d1 , d2) � C(d1 , d2).

For example, the category of finite sets is the full subcategory of Set spanned by the
finite sets.

Exercise 1.48. Does the picture shown in Eq. (1.22) look like the full subcategory of Set
spanned by {0, 1, 2} ⊆ Ob(Set)? Why or why not? ♦

Exercise 1.49. Make an instance of the class Category from Example 1.37 that defines
the full subcategory of Hask spanned by two objects, Bool and Int. ♦

1.3.4 Generalized elements: a first peek at the Yoneda perspective

A category is a web of relationships. Let a be an object in a category C. Given any
object c in C, we can ask what a looks like from the point of view of c. (We choose c
for seer.) The answer to this is encoded by the homset C(c , a), which is the set of all
morphisms from c to a.

Recall from Example 1.13 that elements of a set X are in one-to-one correspondence
with functions 1 → X. Inspired by this, we often abuse our language to say that ‘an
element of X’ is a function x : 1→ X. More precisely, we could say that x is ‘an element
of shape 1’. We then generalize this notion to arrive at the following definition.

Definition 1.50. Let c be an object in a category C. Given an object a, a generalized
element of a of shape c is a morphism e : c → a.

20 CHAPTER 1. IS HASKELL A CATEGORY?

The reader might object: this is just another word for morphism! Nonetheless, we
will find it useful to speak and think in these terms, and believe this is enough to justify
making such a definition.

This allows us to put slightly more nuance in our mantra that a category is about
relationships. Note that, almost by definition, a set is determined by its (generalized)
elements (of shape 1). Not all categories have an object that can play the all-seeing role
of 1. It is true, however, more democratically: an object in a category is determined by
its generalized elements of all shapes.

A nuance is that, as always, we should take into account the role of morphisms.
Suppose we have a morphism f : a → b. We then may obtain sets of generalized
elements C(c , a) and C(c , b). But more than this, we also obtain a function

− # f : C(c , a) −→ C(c , b);
x 7−→ x # f .

This function describes how f transforms generalized elements of a into generalized
elements of b.

To say more precisely what we mean requires the notion of functor, which we shall
get to in the next section. We will return to the Yoneda viewpoint in the next chapter,
with a few more tools under our belt. First though, one more lesson in the philosophy
of category theory.

Isomorphisms: when are two objects the same?

Let’s think about the category of sets for a moment. Suppose we have the set 2 � {0, 1}
and the set B � {apple, pear}. Are they the same set? Of course not! One contains
numbers, and the other (names of) fruits! And yet, they have something in common:
they both have the same number of elements.

How do we express this in categorical terms? In a category, we don’t have the
ability to count the number of elements in an object – indeed, objects need not even
have elements! We’re only allowed to talk of objects, morphisms, identities, and
composition. But this is enough to express a critically (and categorically) important
notion of sameness: isomorphism.

Morphisms in Set are functions, and we can define a function f : 2→ B that sends
0 to apple and 1 to pear. In the reverse direction, we can define a function 1 : B → 2
sending apple to 0 and pear to 1. These two functions have the special property that,
in either order, they compose to the identity: f # 1 � id2, 1 # f � idB.

This means that we can map from 2 to B, and then B back to 2, and vice versa,
without losing any information.

Definition 1.51. Let a and b be objects in a category C. We say that a morphism
f : a → b is an isomorphism if there exists 1 : b → a such that f # 1 � ida and 1 # f � idb .
We will call 1 the inverse of f , and sometimes use the notation f −1.

1.3. CATEGORIES 21

If an isomorphism f : a → b exists, we say that the objects a and b are isomorphic.

We will spend a lot of time talking about isomorphisms in the category of sets, so
they have a special name.

Definition 1.52. A bĳection is a function that is an isomorphism in the category Set.
If there is a bĳection between sets X and Y, we say the elements of X and Y are in
one-to-one correspondence.

Isomorphic objects are considered indistinguishable within category theory. One
way to understandwhy is to remember that category theory is about relationships, and
that isomorphic objects relate in the same way to other objects. Let’s talk about this in
terms of generalized elements.

Fix a shape c. Recall that a morphism f : a → b induces a function from the
generalized elements of a to those of b. If f is an isomorphism, then this function is a
bĳection.

Proposition 1.53. Let f : a → b be an isomorphism. Then for all objects c, we have a
bĳection

C(c , a) C(c , b)
−# f

−# f −1

To see this, consider the following diagram.

c

a b

h h′

ida

f

f −1

idb

Given a generalized element h : c → a of a, − # f sends it to h′ � h # f . Conversely,
− # f −1 sends h′ to h′ # f −1 � h # f # f −1 � h, since f and f −1 are inverses.

Exercise 1.54.
1. What is the composite − # f followed by − # f −1?
2. Prove Proposition 1.53.

♦

In other words, Proposition 1.53 that for each shape c, if a and b are isomorphic,
their generalized elements are in one-to-one correspondence. In general, morphisms
that are not isomorphisms may lose information: they need not induce a bĳection on
generalized elements. Using the intuition of Section 1.2.3, if f is not an isomorphism,
then the induce function − # f it may collapse two generalized elements of a, or may
not cover the entire set of generalized elements of b.

22 CHAPTER 1. IS HASKELL A CATEGORY?

1.4 Thinking of Haskell as a category

Enough philosophy, let’s get to some programming. In the introduction to this chapter,
we spoke about how composition is at the core of programming, and saw how we can
take two Haskell functions, 2 such as concat and words, and compose them using the
. syntax to get a new function. Now equipped with a definition of category, we can see
that these functions might be considered as morphisms in some category. But there
are questions to be answered. First, what is a Haskell function? And second, if Haskell
functions are the morphisms, what are the objects?

In ??we saw that set-theoretically a function is just a special kind of relation between
elements of two sets. In programming, a function is defined by a formula. Such
formulas are constructed using rules, defined by the syntax of a language. This brings
us to the lambda calculus.

1.4.1 The lambda calculus

Haskell’s syntax is based on the lambda calculus. The lambda calculus comes to us
from Alonzo Church’s work in mathematical logic in the 1930s. It is a neat, com-
pact language for writing down mathematical functions using two primitive notions:
lambda abstraction and function application.

We begin with some variable symbols, like x, y, z, and so on. Sentences in the lan-
guage of the lambda calculus are called lambda terms, and these variables are considered
lambda terms themselves.

Given a lambda term A and a variable x, lambda abstraction creates a new lambda
term λx.A. This can be thought of as declaring that any instance of x in the lambda
term A should be thought of as a variable; in other words, the new lambda term can
be thought of as, in some some, a ‘function’ of x.

Given two lambda terms A and B, function application creates a new lambda term
AB. If we are thinking of A as a function of some variable x, then we think of this as
substituting in B wherever we see x. We also include parentheses in the language, to
make the order of construction of a term explicit.

For example, here are some lambda terms that you might see:

x λx.x λx.x y λx.xx λx.(λy.x)

The rules of the lambda calculus say that we should consider two lambda terms the
same if we can turn one into another by this idea of function application. So, for
example, we have

(λx.x)y � y (λx.x)(x y) � x y and (λx.(x y)x)(zz) � ((zz)y)(zz).
2Note thatwe’vedefined theword function as a special sort of relationshipbetween sets. Programming

also often refers to functions, like cat or words. These two notions are indeed related, but distinct ideas,
and care should be taken not to get them confused. If you’re ever confused, it’s a good idea to ask what
sort of function is being referred to: mathematical or programming?

1.4. THINKING OF HASKELL AS A CATEGORY 23

Notice that the lambda term λx.x behaves like an identity function: given some x,
it just returns x. Haskell lets us almost directly employ this same notation; we would
write it:

id = \x -> x

The Greek letter lambda is replaced, in ASCII, with a backslash \ presumably because
it looks like the back part of a lambda λ.

Identity is part of the standardHaskell library called Prelude. If we allow ourselves
to use some other functions from Prelude, we can also define functions such as:

square = \x -> x^2

implies = \x -> \y -> not y || x

Haskell note 1.55 (Pattern matching). There is an alternative, and by far more common,
syntax for functiondefinition, usingHaskell’s patternmatching features. In this syntax,
we might write the above three functions as:

id x = x

square x = x^2

implies y x = not y || x

But keep inmind that this is just “syntactic sugar”: the compiler converts the pattern
matched syntax down to the more basic lambda syntax.

Exercise 1.56 (Church Booleans). Boolean logicmay be encoded in the lambda calculus
using the following definitions:

True � λx.(λy.x)
False � λx.(λy.y)
AND � λp.(λq.(pq)p)

OR � λp.(λq.(pp)q)

Evaluate the lambda terms True AND False and False OR True. ♦

Exercise 1.57 (The Y combinator). The Y combinator is an iconic lambda term whose
reduction does not terminate. It is defined as follows:

Y � λ f .
(
(λx. f (xx))(λx. f (xx))

)
Compute Y1. ♦

24 CHAPTER 1. IS HASKELL A CATEGORY?

1.4.2 Types

Untyped lambda calculus is very expressive. In fact it’s Turing complete, which means
that any program that can be run on a Turing machine can be also expressed in lambda
calculus. A Turing machine is an idealized computer that has access to an infinite tape
fromwhich it can read, and to which it can output data. And just like a Turingmachine
is totally impractical from the programmer’s point of view, so is lambda calculus.
For instance, it’s true that you can encode Boolean logic and natural numbers using
lambda expressions–this is called Church encoding–but working with this encoding is
impossibly tedious and error prone, not tomention inefficient. And because everything
is a function in lambda calculus, it’s okay to apply a number to a function and get
meaningless result. Imagine debugging programs written in lambda calculus! 3

Adding types to lambda calculusmeans that functions can’t be composedwilly-nilly:
the target type of one must match the source type of the next one. This immediately
suggests a category in which objects are types and morphisms are functions.

More properly then, we should say Haskell’s syntax is based on the simply-typed
lambda calculus. Every Haskell term is required to have a type. If a term x has type A,
we write:

x :: A

In fact, in GHCi, you can ask what a term’s type is, using the command :t or :type.
For example:

Prelude>:t "hi"

"hi" :: [Char]

Exercise 1.58. Fire up GHCi. What are the types of the following terms:
1. 42
2. "cat"
3. True

♦

Exercise 1.59. Recall the Y combinator from Exercise 1.57. Try to assign the Y combi-
nator a type. What goes wrong? ♦

In Haskell we have some built-in types, like Integer, which is an arbitrary precision
integer, and Int, which is its fixed size companion (with present implementations,
usually a 64-bit integer (that is, an integer from −263 to 263 − 1)). In practice, a fixed-
size representation is preferred for efficiency reasons, unless you are worried about

3There is also the issue of the Kleene-Rosser paradox (or its simplified version called the Curry’s
paradox), which shows that untyped lambda calculus is inconsistent; but a little inconsistency never
stopped a programming language from being widely accepted.

1.4. THINKING OF HASKELL AS A CATEGORY 25

overflow (e.g., when calculating large factorials). A lot of common types, rather than
being built-in, are defined in the Prelude. Such types include strings String and
Booleans, Bool. Much of this course is about how to construct new types from existing
types, and categorical ideas like universal constructions help immensely.

Since every Haskell term is required to have a type, sometimes it’s your responsi-
bility to tell the Haskell compiler what type your term is. This is done by simply by
declaring it, using the same syntax as above. So to tell Haskell compiler you have a
variable x of type A, we write:

x :: A

Note that it’s not necessary to declare the type of absolutely every line of code: the
Haskell compiler has a powerful type inference system within it, and will be able to
work with a bare minimum of type declarations.

Haskell note 1.60. In Haskell, the names of concrete types start with an upper case letter,
e.g. Int. The names type variables, or type parameters, like a here, start with lowercase
letters.

Notice that we defined the identity function id without giving a type signature. In
fact our definition works for any arbitrary type. We call such a function a polymorphic
function. We’ll talk about polymorphism in more detail in ??. For now, it’s enough to
know that a polymorphic function is defined for all types. (This is the troubling self-
referential aspect of polymorphism: "all types" includes the type we are just defining.
For instance, id can be instantiated for the type a = b -> b and so on.)

It’s possible, although not necessary, to use the universal quantifier forall in the
definition of polymorphic functions:

id :: forall a. a -> a

This latter syntax, however, requires the use of the language pragma ExplicitForAll
(we’ll explain this later).4

Remark 1.61. Types are very similar to sets, and it frequently will be useful to think of
the type declaration x :: A as analogous to the set theoretic statement x ∈ A; ie. that x
is an element of the set A. There are some key differences though, which the category
theoretic perspective helps us keep straight. The main difference is that in the world
of sets, sets have elements. So given a set A, it’s a fair question to ask what its elements
are – that’s exactly what A is, a bag of dots. Types and terms are the other way around:
terms have types. So you can always ask what the type of a term is, but you can’t ask
for all the terms of a given type.

4Note that the period after the forall clause is just a separator and has nothing to do with function
composition, which we’ll meet shortly.

26 CHAPTER 1. IS HASKELL A CATEGORY?

1.4.3 Haskell functions

In category theory, we write f : a → b to mean f is a morphism from a to b. In other
words, we are implicitlyworking in some category C, and f is an element of the homset:

f ∈ C(a , b)

In Haskell, we can also declare that terms are (Haskell) functions, using an almost
identical syntax. Given two Haskell terms A and B, there is a type of functions from A to B
A -> B whose terms are (Haskell) functions accepting an A and producing a B. So for
example, we have

>:t not

not :: Bool -> Bool

We call the type A -> B the type of functions. If you’re worried that we aremixing types,
which are objects in our category, with functions between them, which are morphisms,
this will become clear when we talk about exponentials.

When defining a mathematical function, it’s necessary to first specify the domain
and codomain. For example, we might want to define a function f that squares a
natural number, so we write f : N → N. We might then define the function itself:
f (n) � n2. Similarly, when defining a Haskell function, it is customary to first declare
its type; this is often referred to as its type signature. So, for example, to define the
function square, we might first give the type signature

square :: Int -> Int

A type signature must then be accompanied by an implementation. We have to tell the
computer how to evaluate a function. We have to write some code that will be executed
when the function is called; for example

square x = x^2

Remark 1.62 (A note on Haskell functions vs mathematical functions). "Functions" in
programming are not just simple functions between sets. A "function"may loop forever,
be it because it enters an infinite loop or because of recursion. So maybe we don’t need
recursion? Maybe we could define a programming language in which the execution
of every function is guaranteed to terminate? One way to do this would be to ban
recursion altogether: no function could call itself (or, more precisely, the call graph
cannot contain cycles). Unfortunately, most algorithms and data structures used in
programming are defined recursively (or, equivalently, using looping constructs).

In computer science we say that a language without recursion or some kind of
looping construct is not Turing complete. We could ask if it’s possible to somehow
limit recursion and allow only recursive definitions that are bound to terminate. Often
it’s possible to show that a recursive step reduces the problem to a simpler one, until

1.4. THINKING OF HASKELL AS A CATEGORY 27

it reaches some kind of a bottom (e.g., counting down from n to zero is bound to
terminate for any n). Unfortunately, it’s also known that termination is undecidable.
There is no algorithm that could decide whether an arbitrary program will terminate
or not.

For these reasons, general-purpose programming languages allow unlimited recur-
sion and non-termination. There are ways of dealing with this problem within set
theory. Recursion can be described in domain theory, which is based on partially or-
dered sets. Later, we’ll talk about polymorphism, which also stretches the boundaries
of set theory by introducing self-referential types. Again, there are ways of dealing
with it in set theory, but they are not easy. Category theory provides a much simpler
high-level setting for interpreting programs.

1.4.4 Composing functions

Whatdowedowith functions? Compose them! As function composition is such a basic
operation, in Haskell with give it almost the simplest name: .. Function composition
in Haskell is written in application order. This means that the composite of a function
f:: a -> b and a function g:: b -> c is g . f :: a -> c.

Haskell note 1.63. Note that we’ve written composition as an infix operator. This is
an operator of two arguments that is written between the two arguments. Another
example is addition: we write 4 + 5 to add two numbers.

To use an infix operator as an outfix operator – that is, a binary operator that is
written before its arguments – we place it in parentheses. So 4 + 5may also be written
(+) 4 5.

Composition is itself a Haskell function. What is its type signature? The Haskell
definition takes advantage of currying. We’ll talk much more about this in Chapter 3,
but in this case, it’s a trick that allows us to consider a function of two arguments as
a function of the first argument that returns a function of the second argument. This
trick gives the type signature:

(.) :: (b -> c) -> ((a -> b) -> (a -> c))

The function type symbol -> by default associates to the right, so this is equal to the
type

(.) :: (b -> c) -> (a -> b) -> a -> c

Note that the rest of the parentheses are essential.
Here’s the implementation. Given two functions f :: b -> c and g :: a -> b,

we produce a third function defined as a lambda. The only thing we can do with the
functions is to apply them to arguments, and that’s what we do:

(.) f g = \x -> f (g x)

28 CHAPTER 1. IS HASKELL A CATEGORY?

The result of calling gwith the argument x is being passed to f. Notice the parentheses
around g x. Without them, f g xwould be parsed as: f is a function of two arguments
being called with g and x. This is because function application is left associative. All
this requires some getting used to, but the compiler will flag most inconsistencies.

Composition is just a functionwith a funnyname, (.). You can forma functionname
using symbols, rather than more traditional strings of letters and digits, by putting
parentheses around them. You can then use these symbols, without parentheses, in
infix notation. So, in particular, the above can be rewritten:

f . g = \x -> f (g x)

or, using the syntactic sugar for function definition, simply as:

(f . g) x = f (g x)

Composition, just like identity before, is a fully polymorphic function, as witnessed by
lowercase type arguments. It could be written as:

(.) :: forall a b c. (b -> c) -> (a -> b) -> a -> c

(f . g) x = f (g x)

Exercise 1.64. Suppose f : Int → Int sends an integer to its square, f (x) B x2 and
that 1 : Int→ Int sends an integer to its successor, 1(x) B x + 1.

1. Write f and 1 inHaskell, including their type signature and their implementation.
2. Let h B f ◦ 1. What is h(2)?
3. Let i B f # 1. What is i(2)? ♦

Definingnewmorphismsby composing existing ones is used inHaskell in point-free
style of programming. Here’s an example, similar to the one in the introduction.

Example 1.65. Let’s call the function words with a string "Hello world". Here’s how
it’s done:

Prelude> words "Hello world"

["Hello","world"]

The result is a comma-separated list of words with spaces removed.
Now let’s call the function length to calculate the length of the list of strings from

the previous call:a

Prelude> length ["Hello","world"]

2

We can compose the two functions using the composition operator, which is just a
period “.” between the two functions. Let’s apply it to the original string:

1.4. THINKING OF HASKELL AS A CATEGORY 29

Prelude> (length . words) "Hello world"

2
aNote that writing “concat it” also works in GHCI.

Haskell note 1.66 (Binding and parentheses). Notice the use of parentheses. Without
them, the line:

length . words "Hello world"

would result in an error, because function application binds stronger than the compo-
sition operator. In effect, this would be equivalent to:

length . (words "Hello world")

The compiler would complain with a somewhat cryptic error message. This is because
the composition operator expects a function as a second argument, and what we are
passing it is a list of strings.

Function application is the most common operation in Haskell, so its syntax is
reduced to the absolute minimum. In most cases a space between two symbols is
enough.

We can define new functions by composing existing functions:

Prelude> let wordCount = length . words

Prelude> wordCount "Hello Haskell!"

2

Haskell note 1.67 (let). In the interactive environment, all definitions must be prefixed
with let. In a standalone file, let is only used in local definitions, inside a function
body. The difference in syntax is there because all input and output must be executed
in the IOmonad (whichwe’ll discuss later). The command line interfacemust therefore
use monadic syntax, which is normally seen in do blocks.

Exercise 1.68. Recall the notion of an isomorphism from Definition 1.51. Here’s an
example of an isomorphism in Haskell (don’t worry about the syntax, it will become
clear later) between two types Coin and Bool. It consists of two function, one being the
inverse of the other.

data Coin = Head | Tails

decide :: Coin -> Bool

decide Tail = False

decide Head = True

unDecide :: Bool -> Coin

30 CHAPTER 1. IS HASKELL A CATEGORY?

unDecide True = Head

unDecide False = Tail

You can easily convince yourself by case analysis that unDecide is the inverse of
decide, but this fact is not expressible in Haskell. There are programming languages
like Idris or Agda, which use dependent type systems, and which treat proofs of
equality as first order constructs that can be passed between functions or stored in data
structures.

Identity is also an example of an isomorphism. Here’s an example of a non-identity
isomorphism that maps Boolean to Boolean by inverting the meaning of True and
False:

not :: Bool -> Bool

not True = False

not False = True

Explain why these two functions are isomorphisms, and why Coin and Bool are
isomorphic. ♦

	Is Haskell a category?
	Programming: the art of composition
	Two fundamental ideas: sets and functions
	What is a set?
	Functions
	Some intuitions about functions

	Categories
	The category of sets
	Definition of category
	Some elementary examples
	Generalized elements: a first peek at the Yoneda perspective

	Thinking of Haskell as a category
	The lambda calculus
	Types
	Haskell functions
	Composing functions
	So is Haskell a category?

