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I. Hypergraph categories



Abstractly, how do we construct this?
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... as structured monoidal category

L
lieasmpt

——e

(18f® = ®1); (> ®1® >&1); (—og® >); ( ~C®h).



... as structured monoidal category




... as structured monoidal category




A special commutative Frobenius monoid on X is

> - < -

wXeX »X nl—>X XXX eX —>1

obeying
o S ol e SR PO
" e — =X

G e



A special commutative Frobenius monoid on X is

> - < -

wXeX »X nl—>X XXX eX —>1
obeying the spider theorem

. -
> T



A hypergraph category is a symmetric monoidal category in which
each object X is equipped with a Frobenius structure in a way
compatible with the monoidal product.
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A hypergraph functor is a strong symmetric monoidal functor (F, ¢)
such that if (ux,nx,0x,€x ) is the Frobenius structure on X, then

(QOX,X;FMX7 or; Fnx, FfSX%LP;(l,X» FEX;go}l)isthe Frobenius
structure on F'X.



Let Hyp be the 2-category with
objects: hypergraph categories
morphisms: hypergraph functors
2-morphisms: monoidal natural transformations.

Let Hypge be the full sub-2-category of objectwise-free hyper-
graph categories.

Theorem (Coherence for hypergraph categories)
Hypr and Hyp are 2-equivalent.




II. Cospan algebras



Abstractly, how do we construct this?
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...as operad algebra




Define Cospan, =[], Cospan(FinSet).

Cospan, is the symmetric monoidal category with
objects: A-typed finite sets t: X - A.
morphisms: cospans over A.
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Let CospanAlg be the category with
objects: lax symmetric monoidal functors

A A: (Cospan,,®) — (Set, x)
morphisms: monoidal natural transformations

Cospan, A

A
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III. The equivalence



Theorem
Hypyr and CospanAlg are (1-)equivalent.

Proof sketch:
1. Work over A.
2. Frobenius monoids define cospan algebra.
3. Cospan algebras define homsets of hypergraph categories.



1. Working over A

Lemma
There is a Grothendieck fibration Gens: Hypge - Set| i+ sending

an objectwise-free hypergraph category to its set of generating
objects.

This implies
AeSet ;s
Hypgr 2 [ HypoF(A)
Note also

AeSet| s

CospanAlg = [ Lax(Cospan,, Set)



2. Frobenius defines cospan algebras

Lemma
Cospan, is the free hypergraph category over A (ie. with ob-
jects generated by A). That is, there is an adjunction

Cospan_

—
Setist ¢ L Hypop

Gens

Given a hypergraph category H over A, we can construct a cospan

algebra

H(,-
Ay: Cospan, b w4 R, Set.



3. Cospans define hypergraph structure

Lemma
Hypergraph categories are self dual compact closed.

Given a cospan algebra A over A, we may define a hypergraph
category H 4 over A with homsets

HA(X,Y)=A(X®Y).



3. Cospans define hypergraph structure

The remaining structure is defined by certain cospans.

composition v

monoidal product
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identity braiding (co)multiplication (co)unit



Theorem (Coherence for hypergraph categories)
Hypyr and Hyp are 2-equivalent.
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